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a b s t r a c t

In this paper we study a MAP/PH/1 queueing model in which the server is subject to taking
vacations and offering services at a lower rate during those times. The service is returned to
normal rate whenever the vacation gets over or when the queue length hits a specific
threshold value. This model is analyzed in steady state using matrix analytic methods.
An illustrative numerical example is discussed.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Queues with vacations have been extensively studied by several authors. We refer the reader to the paper by Doshi [1] for
earlier works (prior to 1985) on vacation models and to the book by Tian and Zhang [2] for works through 2006. Queueing
models with vacations under different scenarios such as (a) exhaustive clearance where the server clears all the work in the
system before going on a vacation and returns to work only after completing the current vacation; (b) limited clearance in
which the server proceeds on a vacation after completing a fixed number of services or after a fixed period of time; and (c)
gated clearance in which the server returning from a vacation serves only those who are waiting at that instant before going
on another vacation. The server can take single or multiple vacations at a time. For example, in the case of single vacation the
server remains in the system even if there is no one waiting, whereas in the multiple vacations the server will start another
vacation when the system is empty whenever coming back from a vacation.

Servi and Finn [3] introduced a working vacation model with the idea of offering services but at a lower rate whenever the
server is on vacation. Their model was generalized to the case of M/G/1 in ([4,5]), and to GI/M/1 model in [6]. A survey of
working vacation models with emphasis on the use of matrix analytic methods is given in Tian et al. [7]. Working vacation
models have a number of applications in practice. Two such examples are given in [7].

Recently, Li and Tian [8] studied an M=M=1 queue with working vacations in which vacationing server offers services at a
lower rate for the first customer arriving during a vacation. Upon completion of the service at a lower rate the server will (a)
continue the current vacation (if not finished) or take another vacation (if the working vacation expired) if there are no
. All rights reserved.
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customers waiting or (b) resume at a normal rate (irrespective of whether the vacation expired or not) if there are customers
waiting. Resuming services at a normal rate while the vacation is still in progress corresponds to the vacation being
interrupted.

Very recently, Zhang and Hou [9] studied a MAP=G=1 queue with working vacations and vacation interruption using sup-
plementary variable method. In this model, the authors assume that the vacation times are exponentially distributed and
that the server gets back to normal service mode when at the service (offered during a vacation) completion the system
has at least one customer waiting in the queue. The server is allowed to take multiple vacations. In this paper we extend
the work of [8] in the following way. First we assume a more versatile point process to model the arrivals. Secondly, we
use phase type services which generalizes some of the well-known distributions such as exponential, generalized Erlang,
and hyperexponential. Thirdly, we introduce a threshold, say, 1 6 N <1, such that the server offering services (at a lower
rate) during a vacation will have the vacation interrupted, the moment the queue size hits N.

In this paper, we consider a single server queueing model in which customers arrive according to a versatile point process,
namely, Markovian arrival process (MAP). A MAP is a tractable class of Markov renewal processes. It should be noted that by
appropriately choosing the parameters of the MAP the underlying arrival process can be made as a renewal process. The MAP
is a rich class of point processes that includes many well-known processes such as Poisson, PH-renewal processes, and Mar-
kov-modulated Poisson process. One of the most significant features of the MAP is the underlying Markovian structure and
fits ideally in the context of matrix-analytic solutions to stochastic models. Matrix-analytic methods were first introduced
and studied by Neuts [10]. As is well known, Poisson processes are the simplest and most tractable ones used extensively
in stochastic modelling. The idea of the MAP is to significantly generalize the Poisson processes and still keep the tractability
for modelling purposes. Furthermore, in many practical applications, notably in communications engineering, production
and manufacturing engineering, the arrivals do not usually form a renewal process. So, MAP is a convenient tool to model
both renewal and non-renewal arrivals. While MAP is defined for both discrete and continuous times, here we will need only
the continuous time case.

The MAP in continuous time is described as follows. Let the underlying Markov chain be irreducible and let Q � be the gen-
erator of this Markov chain. At the end of a sojourn time in state i, that is exponentially distributed with parameter ki, one of
the following two events could occur: with probability pijð1Þ the transition corresponds to an arrival and the underlying Mar-
kov chain is in state j with 1 6 i; j 6 m; with probability pijð0Þ the transition corresponds to no arrival and the state of the
Markov chain is j, j – i. Note that the Markov chain can go from state i to state i only through an arrival. Define matrices
D0 ¼ ðd0

ijÞ and D1 ¼ ðd1
ijÞ such that d0

ii ¼ �ki, 1 6 i 6 m, d0
ij ¼ kipijð0Þ, for j – i and d1

ij ¼ kipijð1Þ, 1 6 i; j 6 m. By assuming D0

to be a nonsingular matrix, the interarrival times will be finite with probability one and the arrival process does not termi-
nate. Hence, we see that D0 is a stable matrix. The generator Q � is then given by Q � ¼ D0 þ D1.

Thus, D0 governs the transitions corresponding to no arrival and D1 governs those corresponding to an arrival. It can be
shown that MAP is equivalent to Neuts’ versatile Markovian point process. The point process described by the MAP is a spe-
cial class of semi-Markov processes with transition probability matrix given by
Z x

0
eD0t dtD1 ¼ ½I � eD0x�ð�D0Þ�1D1; x P 0:
For use in sequel, let eðrÞ, ejðrÞ and Ir denote, respectively, the (column) vector of dimension r consisting of 1’s, column
vector of dimension r with 1 in the jth position and 0 elsewhere, and an identity matrix of dimension r. When there is no
need to emphasize the dimension of these vectors we will suppress the suffix. Thus, e will denote a column vector of 1’s
of appropriate dimension. The notation �will stand for the Kronecker product of two matrices. Thus, if A is a matrix of order
m� n and B is a matrix of order p� q, then A� B will denote a matrix of order mp� nq, whose (i, j)th block matrix is given by
aijB. For more details on Kronecker products and sums, we refer the reader to [11].

Let p be the stationary probability vector of the Markov process with generator Q �. That is, p is the unique (positive) prob-
ability vector satisfying.
pQ � ¼ 0; pe ¼ 1: ð1Þ
Let n be the initial probability vector of the underlying Markov chain governing the MAP. Then, by choosing n appropri-
ately we can model the time origin to be (a) an arbitrary arrival point; (b) the end of an interval during which there are at
least k arrivals; and (c) the point at which the system is in specific state such as the busy period ends or busy period begins.
The most interesting case is the one where we get the stationary version of the MAP by n = p. The constant k ¼ pD1e, referred
to as the fundamental rate gives the expected number of arrivals per unit of time in the stationary version of the MAP.

Often, in model comparisons, it is convenient to select the time scale of the MAP so that k has a certain value. That is
accomplished, in the continuous MAP case, by multiplying the coefficient matrices D0 and D1, by the appropriate common
constant. For further details on MAP and their usefulness in stochastic modelling, we refer to [12–14] and for a review
and recent work on MAP we refer the reader to [15,16].

This paper is organized as follows. In Section 2 we provide a description of the queueing model under study. In Section 3
the steady state analysis of the model is presented. In Section 4 we discuss an illustrative numerical example.
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2. Mathematical model

We consider a single server queueing system in which customers arrive according to a Markovian arrival process with
parameter matrices D0 and D1 of dimension m. An arriving primary customer finding the server free (i.e., on vacation) gets
into service immediately but at a lower rate. On the other hand an arriving customer finding the server busy gets into a buf-
fer (of infinite capacity) for the server to become available. The service times follow a phase type distribution with represen-
tation (a,T) of order n. When the system becomes empty at the time of a completion of a service, the server will go on a
vacation. The duration of a vacation is assumed to be exponentially distributed with parameter g. A vacation is interrupted
when a customer arrives during that time. However, the server offers services to those customers arriving during a vacation
at a lower rate as compared to the other (regular) customers. We assume that the service times of those customers (served at
a lower rate) are also of phase type but with representation (a,hT), with 0 < h < 1. The server continues to serve at this rate
until either the vacation expires or the queue length hits a pre-determined threshold, say, N, 1 6 N <1. At this instant, the
server instantaneously switches over to the normal rate and continues to serve at this rate until the system becomes empty.
At the end of a vacation if there is no customer waiting for service, the server takes another vacation. Let l denote the regular
service rate. It is easy to verify that l ¼ ½að�TÞ�1e��1 and the vacation mode of service has rate hl.

3. steady-state analysis

In this section we will discuss the steady-state analysis of the model under study.

3.1. The QBD process

The model described in Section 2 can be studied as a quasi-birth-and-death (QBD) process. First, we set up necessary
notations. Define NðtÞ to be the number of customers in the system at time t,
S1ðtÞ ¼
0; if the service is in vacation mode;
1; if the service is normal;

�

S2ðtÞ, the phase of the service process when the server is busy, and MðtÞ to be the phase of the arrival process at time t. It is
easy to verify that fðNðtÞ; S1ðtÞ; S2ðtÞ;MðtÞÞ : t P 0g is a quasi-birth-and-death process (QBD) with state space
X ¼
[1
i¼0

lðiÞ;
where
lð0Þ ¼ fð0;1Þ; ð0;2Þ; . . . ð0;mÞg;
and for i P 1,
lðiÞ ¼ fði; j1; j2; kÞ : j1 ¼ 0 or 1;1 6 j2 6 n;1 6 k 6 mg:
Note that when NðtÞ ¼ 0, S1ðtÞ and S2ðtÞ do not play any role and will not be tracked. In this case only the state, MðtÞ, of the
arrival process needs to be accounted.

The generator, Q, of the QBD process under consideration is of the form
Q ¼

D0 C0

C2 B1 I � D1

. .
. . .

. . .
.

B2 B1 I � D1

B2 B1 e� I � D1

e02ð2Þ � T0a� I A1 A0

A2 A1 A0

. .
. . .

. . .
.

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; ð2Þ
where the (block) matrices appearing in Q are as follows.
C0 ¼ ½a� D1 O�; C2 ¼ hT0 � I
T0 � I

� �
;

B1 ¼
hT � D0 � gI gI

O T � D0

� �
; B2 ¼

hT0a� I O

O T0a� I

" #
;

A0 ¼ I � D1; A1 ¼ T � D0; A2 ¼ T0a� I: ð3Þ
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3.2. The steady-state probability vector

Defining A ¼ A0 þ A1 þ A2 and d to be the steady-state probability vector of the irreducible matrix A, it is easy to verify that
the vector d satisfying
dA ¼ 0; de ¼ 1; ð4Þ
is given by
d ¼ ðlað�TÞ�1 � pÞ; ð5Þ
where p as given in (1).
The condition dA0e < dA2e required for the stability of the queueing model under study (see [10]) reduces to k < l.
Let x be the steady-state probability vector of Q . Partition this vector as:
x ¼ ðx0; x1; x2 . . . ; . . . ; xN ; xNþ1; . . .Þ;
where x0 is of dimension m, x1; x2; . . . ; xN are of dimension 2mn and xNþ1; xNþ2; . . . are of dimension mn.
Under the condition that k < l, the steady-state probability vector x is obtained (see, e.g. [10]) as follows:
xNþi ¼ xNþ1Ri�1; i P 1; ð6Þ
where the matrix R is the minimal nonnegative solution to the matrix quadratic equation:
R2A2 þ RA1 þ A0 ¼ 0; ð7Þ
and the vectors x0; . . . ; xNþ1 are obtained by solving
x0D0 þ x1C2 ¼ 0;
x0C0 þ x1B1 þ x2B2 ¼ 0;
xi�1ðI � D1Þ þ xiB1 þ xiþ1B2 ¼ 0; 2 6 i 6 N � 1;

xN�1ðI � D1Þ þ xNB1 þ xNþ1ðe02ð2Þ � T0a� IÞ ¼ 0;
xNðe� I � D1Þ þ xNþ1ðA1 þ RA2Þ ¼ 0;

ð8Þ
subject to the normalizing condition
XN

i¼0

xieþ xNþ1ðI � RÞ�1e ¼ 1: ð9Þ
The computation of the R matrix can be carried out using a number of well-known methods such as logarithmic reduc-
tion. We will list only the main steps involved in the logarithmic reduction algorithm for the computation of R. For full details
of the logarithmic reduction algorithm we refer the reader to [17].

Logarithmic Reduction Algorithm for R:
Step 0: H ð�A1Þ�1A0, L ð�A1Þ�1A2, G ¼ L, and T ¼ H.
Step 1:
U ¼ HLþ LH
M ¼ H2

H ðI � UÞ�1M

M  L2

L ðI � UÞ�1M

G Gþ TL

T  TH
Continue Step 1 until jje� Gejj1 < �.
Step 2: R ¼ �A0ðA1 þ A0GÞ�1.
The computation of the vectors x0; . . . ; xNþ1 can be carried out by exploiting the special structure of the coefficient matri-

ces and the details are omitted. For use in the sequel, we partition xi ¼ ðui; v iÞ; 1 6 i 6 N, where ui and v i are of dimension
mn.

3.3. The stationary waiting time distribution in the queue

The stationary waiting time distribution in the queue of a customer is derived here. We obtain this by conditioning on the
fact that at an arrival epoch the server is serving in normal mode or in vacation mode. First note that an arriving customer
will enter into service immediately (at a lower service rate) when the server is on vacation. Otherwise, the customer has to
wait before getting into service (either at a lower rate or normal rate).
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3.3.1. Conditional waiting time in the queue (normal mode)
Here we condition that an arriving customer finds the server busy serving in normal mode. First note that in this case, the

waiting time is always positive. We now define zi;j to be the steady-state probability that an arrival will find the server busy
in normal mode with the current service in phase j, and the number of customers in the system including the current arrival
to be i, for 1 6 j 6 n; i P 2. Let zi ¼ ðzi;1; zi;2; . . . ; zi;nÞ and z ¼ ð0; z2; z3; . . .Þ. Then it is easy to verify that
zi ¼

1
k v i�1ðI � D1eÞ; 2 6 i 6 N;
1
k ðuN þ vNÞðI � D1eÞ; i ¼ N þ 1;
1
k xi�1ðI � D1eÞ; i P N þ 2:

8><>:

The waiting time may be viewed as the time until absorption in a Markov chain with a highly sparse structure. The state

space (that includes the arriving customer in its count) of this Markov chain is given by X1 ¼ f�g [ fði; jÞ : i P 2;1 6 j 6 ng.
The state ⁄ corresponds to the absorbing state indicating the completion of waiting for the service. It is easy to verify that the
generator, eQ 1, of this Markov process is of the form
~Q 1 ¼

0 O

T0 T

T0a T

T0a T

. .
. . .

.

0BBBBBB@

1CCCCCCA: ð10Þ
Define WðtÞ; t > 0 to be the probability that an arriving customer will enter into service no later than time t conditioned
on the fact that the service is in normal mode. Let fW normalðsÞ denote the Laplace–Stieltjes transform of the conditional sta-
tionary waiting time in the queue of an arriving customer during the normal service mode. Using the structure of ~Q1 it can
readily be verified that the following result holds good.

Theorem 1. The LST of the conditional waiting time distribution of an arriving customer, finding the server busy in normal mode,
is given by
fW normalðsÞ ¼ c
X1
i¼2

ziðsI � TÞ�1T0½aðsI � TÞ�1T0�i�2
; ReðsÞP 0; ð11Þ
where the normalizing constant c is given by
c ¼
X1
i¼2

zie

" #�1

: ð12Þ
Note. The conditional mean waiting time, l0normal, in the queue of an arrival finding the server to be busy in normal mode
soon after the arrival is calculated as
l0normal ¼ �fW 0ð0Þ ¼ c
X1
i¼2

zið�TÞ�1eþ c
l
X1
i¼2

ði� 2Þzie:
Using the expression for zi, the conditional mean waiting time, l0normal, can be simplified as
l0normal ¼
c
k

XN

i¼1

v i þ uN þ xNþ1ðI � RÞ�1

" #
ð�TÞ�1e� D1e
h i

þ c
kl

X1
i¼1

v i þ ðN � 1ÞuN þ NxNþ1ðI � RÞ�1 þ xNþ1RðI � RÞ�2

" #
½e� D1e�: ð13Þ
3.3.2. Conditional stationary waiting time in the queue (vacation mode)
The conditional stationary waiting time in the queue of an arriving customer given that the server is busy in vacation

mode is derived here. First, observe that the waiting time in the queue of an arriving customer is zero with probability
z0 ¼ 1

k x0D1e. Let wi;j2 ;k; 1 6 i 6 N; 1 6 j2 6 n; 1 6 k 6 m, denote the steady-state probability that immediately after the ar-
rival the customer will find the server busy serving in vacation mode with the service in phase j2 and the number of custom-
ers in the system (including the current arrival) to be i, and the arrival process to be in phase k. Let wi ¼ ðwi;1;1; . . . ;wi;n;mÞ. It is
easy to verify that
wi ¼
1
k x0ða� D1Þ; i ¼ 1;
1
k ui�1ðI � D1Þ; 2 6 i 6 N:

(
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Observe that the conditional waiting time in the queue of an arriving customer finding the server busy in vacation mode
soon after the arrival depends on the future arrivals due to the threshold placed on the system for bringing back the service
rate to normal. Thus, we need to keep track of the phase of the arrival process up until the service rate becomes normal due
either to meeting the threshold or the vacation expiring. Towards this end, we define the following set of states.

Let ði; j; j2; kÞ; 1 6 i 6 N � 1; 1 6 j 6 i; 1 6 j2 6 n; 1 6 k 6 m, denote the state that corresponds to the server being in
vacation mode with i customers in the queue; the arriving customer’s position in the queue is j; the current service is in phase
j2, and the arrival process is in phase k. Define ði�; j2Þ : 1 6 i� 6 N � 1;1 6 j2 6 n to be the state that corresponds to the server
serving in normal mode and the position of the tagged customer in the queue being i� and the current service in phase j2.

Let i = fði; j; j2; kÞ;1 6 j 6 i;1 6 j2 6 n;1 6 k 6 mg; 1 6 i 6 N � 1, and i� = fði�; j2Þ;1 6 j2 6 ng; 1 6 i� 6 N � 1.
Before we formally state the result we need the following notations. Define:

� Ir is an identity matrix of dimension r.

� bIr is a matrix of dimension r � N � 1 of the form
Îr ¼ Ir 0ð Þ; 1 6 r 6 N � 1:
� �Ir is a matrix of dimension r � r � 1 of the form
�Ir ¼
0

Ir�1

� �
; 2 6 r 6 N � 1:
� eIr is a matrix of dimension r � r þ 1 of the form
eIr ¼ Ir 0ð Þ; 1 6 r 6 N � 2:
Let
L1;1 ¼

T

T0a T

T0a T

. .
. . .

.

T0a T

0BBBBBBBBBB@

1CCCCCCCCCCA
; L2;1 ¼

gbI1 � I � e

gbI2 � I � e

..

.

gbIN�2 � I � e

IN�1 � ðgI � eþ I � D1eÞ

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
; ð14Þ

L2;2 ¼

eB1
eI1 � I � D1

h�I2 � T0a� I I2 � eB1
eI2 � I � D1

h�I3 � T0a� I I3 � eB1
eI3 � I � D1

. .
. . .

.

h�IN�1 � T0a� I IN�1 � eB1

0BBBBBBB@

1CCCCCCCA; ð15Þ
and
 eB1 ¼ ðhT � D0Þ � gI: ð16Þ
Under this setup, one can readily verify the following result.

Theorem 2. The conditional waiting time distribution in the queue of an arriving customer finding the server in vacation mode
soon after the arrival is of phase type with representation ðc; LÞ of order ½ðN � 1Þnþ 0:5NðN � 1Þmn�, where
c ¼ dð0;w2; e02ð2Þ �w3; e03ð3Þ �w4; 	 	 	 ; e0N�1ðN � 1Þ �wNÞ; ð17Þ
and
L ¼
L1;1 0
L2;1 L2;2

� �
; ð18Þ
where the normalizing constant is given by d ¼
PN

i¼1wie
h i�1

:

Note. The conditional mean waiting time, l0vacation, in the queue of an arrival finding the server to be busy during vacation
mode soon after the arrival is calculated as l0vacation ¼ cð�LÞ�1e. The computation of this mean is achieved by exploiting the
special structure of c and L. We will briefly present the steps involved in this.
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Defining
cð�LÞ�1 ¼ ða;bÞ;
and partitioning the vectors a and b as
a ¼ ða1; 	 	 	 ;aN�1Þ;

b ¼ ðb1;1;b2;1;b2;2; . . . ;bN�1;1; . . . ;bN�1;N�1Þ;
where ai; 1 6 i 6 N � 1, is of dimension n and bi;j; 1 6 j 6 i; 1 6 i 6 N � 1, is of dimension of mn, the mean l0vacation is given
by
l0vacation ¼
XN�1

i¼1

aieþ
Xi

j¼1

bi;je

" #
:

The vectors ai;1 6 i 6 N � 1; and bi;j; 1 6 j 6 i; 1 6 i 6 N � 1, are ideally suited for solving using any of the well-known
methods such as (block) Gauss–Seidel. The necessary equations are as follows:
a1 ¼ a2T0að�TÞ�1 þ g
XN�1

r¼1

br;1ð�T�1 � eÞ þ bN�1;1ð�T�1 � D1eÞ;

ai ¼ aiþ1T0að�TÞ�1 þ g
XN�1

r¼i

br;ið�T�1 � eÞ þ bN�1;ið�T�1 � D1eÞ; 2 6 i 6 N � 2;

aN�1 ¼ gbN�1;N�1ð�T�1 � eÞ þ bN�1;N�1ð�T�1 � D1eÞ;

b1;1 ¼ ½w2 þ hb2;2ðT0a� IÞ�ð�eB1Þ�1
;

bi;1 ¼ ½bi�1;1ðI � D1Þ þ hbiþ1;2ðT0a� IÞ�ð�eB1Þ�1
; 2 6 i 6 N � 2;

bi;j ¼ ½bi�1;jðI � D1Þ þ hbiþ1;jþ1ðT0a� IÞ�ð�eB1Þ�1
; 2 6 j 6 i� 1; 3 6 i 6 N � 2;

bi;i ¼ ½wiþ1 þ hbiþ1;iþ1ðT0a� IÞ�ð�eB1Þ�1
; 2 6 i 6 N � 2;

bN�1;j ¼ bN�2;jðI � D1Þð�eB1Þ�1
; 1 6 j 6 N � 2;

bN�1;N�1 ¼ wNð�eB1Þ�1
;

subject to the condition
a1T0 þ h
XN�1

i¼1

bi;1ðT0 � eÞ ¼ 1� dw1e:
3.3.3. The stationary waiting time in the queue
From the knowledge of conditional stationary waiting time in the queue, one can get the (unconditional) stationary wait-

ing time in the queue and the details are omitted.

Note. The (unconditional) mean, l0WTQ , waiting time of a customer in the queue is obtained as
l0WTQ ¼
1
k

XN

i¼1

v i þ uN þ xNþ1ðI � RÞ�1

" #
½ð�TÞ�1e� D1e�

þ 1
kl

X1
i¼1

v i þ ðN � 1ÞuN þ NxNþ1ðI � RÞ�1 þ xNþ1RðI � RÞ�2

" #
½e� D1e� þ 1

d

XN�1

i¼1

aieþ
Xi

j¼1

bi;je

" #
: ð19Þ
3.4. Analysis of slow service mode

In this section we will discuss the duration of the server spending in slow service mode as well as the number of visits to
level 0 before hitting normal service mode.

3.4.1. The duration in slow service mode
The duration, Tslow, in slow service mode is defined as the time the server starts in slow service mode (through initiating a

working vacation) until either the server takes another vacation or the server gets back to normal mode through the working
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vacation expiring. In this section we will show that the random variable Tslow can be studied as the time until absorption in a
finite state continuous time Markov chain with two absorbing states. We first define
cM ¼ c1ða� x0D1;0Þ;

M ¼

eB1 I � D1

hðT0a� IÞ eB1 I � D1

hðT0a� IÞ eB1 I � D1

. .
. . .

.

hðT0a� IÞ eB1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
;

M0
1 ¼

hðT0 � eÞ
0
..
.

0

0BBBB@
1CCCCA; M0

2 ¼

ge
ge

..

.

ge
geþ ðe� D1eÞ

0BBBBBBB@

1CCCCCCCA;
where c1 ¼ ½x0D1e��1 is the normalizing constant and eB1 is as given in (16). The matrix M is of dimension Nmn. First note that
the probability, pslow, that the server will serve only in slow mode before taking another vacation is given by
pslow ¼ cMð�MÞ�1M0

1. We now have the following result.

Theorem 3. The (conditional) probability density function of Tslow, conditioned on the fact that the slow service mode ends
through the server taking another vacation, is given by
fTslow
ðyÞ ¼ 1

pslow
cMeMyM0

1; y P 0: ð20Þ
Given that the slow service mode ends through the server taking another vacation, the (conditional) mean time spent in
slow mode can be calculated as
l0SM ¼
1

pslow
cMð�MÞ�2M0

1: ð21Þ
Note. 1. The special structure of cM; M, and M0
1 is to be exploited when computing this mean. The details are similar to the

computation of l0vacation and hence omitted.
2. By a similar argument we can get the (conditional) probability density function of Tslow and the conditional mean,

conditioned on the fact that the server ends the slow service mode by entering into the normal rate. The details are omitted.
3.4.2. The distribution of the number of visits to level 0 before hitting normal service mode
We consider the queueing system at an arrival epoch that finds the server in vacation mode. At this instant the service

will start in slow mode. The quantity that is of interest here is the probability mass function, fpk; k P 0g, of the number of
visits to level 0 before hitting normal service mode. This mass function and its associated measures such as mean and stan-
dard deviation, play an important role in the qualitative study of the model under consideration. Using the set up in 3.4.1 it
can easily be verified that
pk ¼ cMð�MÞ�1BkM0
2; k P 0; ð22Þ
where
B ¼ h ðe1e01 � T0a� ð�D0Þ�1D1Þ
h i

ð�MÞ�1
: ð23Þ
Note. It is easy to see that the mean number of visits, lNVZ , to level 0 before hitting level N þ 1 is obtained as
lNVZ ¼ cMð�MÞ�1BðI � BÞ�2M0
2: ð24Þ
The computation of lNVZ can be carried out by exploiting the special structure of cM; M, and B. Below, we will outline only
the main steps. Towards this end, we first define
cMð�MÞ�1 ¼ ðd1; . . . ;dNÞ;
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where the vectors di; 1 6 i 6 N, are of dimension nm, and their computation is very similar to the one discussed in finding
l0vacation. From Eq. (23) it is clear that B is of the form
B ¼

B1 B2 BN

0 0 0

..

. ..
. ..

.

0 0 0

0BBBBBBB@

1CCCCCCCA;
where the matrices Bi; 1 6 i 6 N, of order nm are obtained by solving the following equations that are ideally suited for any
of the well-known methods such as (block) Gauss–Seidel.
B1 ¼ h½B2ðT0a� IÞ þ ðT0a� ð�D0Þ�1D1Þ�ð�eB1Þ�1
;

Bi ¼ ½Bi�1ðI � D1Þ þ hBiþ1ðT0a� IÞ�ð�eB1Þ�1
; 2 6 i 6 N � 1;

BN ¼ BN�1ðI � D1Þð�eB1Þ�1
;

subject to the condition
hB1ðT0 � eÞ þ BNðe� D1eÞ þ g
XN

i¼1

Bie ¼ hðT0 � eÞ;
and eB1 is as given in (16).
Using the facts that
pslow ¼ hd1ðT0 � eÞ and lNVZ ¼ cMð�MÞ�1ðI � BÞ�2M 0
2 � 1;
and the special form of B, it can easily be verified that
lNVZ ¼ hd1ðI � B1Þ�1ðT0 � eÞ:
3.4.3. The uninterrupted vacation time
The uninterrupted vacation time is defined as the duration that begins with the server becoming idle (and thus starts a

vacation) until a new arrival interrupts the vacation. It is easy to verify that this duration is of phase type with representation
ðn;D0Þ of dimension m, where n ¼ c2ðhu1 þ v1ÞðT0 � IÞ and c2 is the normalizing constant given by c2 ¼ ½ðhu1 þ v1ÞðT0 � eÞ��1.
The mean, lUIV , is calculated as lUIV ¼ nð�D0Þ�1e.

3.5. Key system performance measures

In this section we list a number of key system performance measures to bring out the qualitative aspects of the model
under study. Note that these are in addition to the ones such as the conditional mean waiting times and mean waiting time
listed above. The measures are listed below along with their formulae for computation:

1. The probability that the system is idle: PIDLE ¼ x0e.
2. The probability that the server is serving at a lower rate: PLR ¼

PN
i¼1uie.

3. The probability that the server is serving at a normal rate rate: PNR ¼
PN

i¼1v ieþ xNþ1ðI � RÞ�1e.
4. The mean number of customers in the system: lNS ¼

PN
i¼1iðui þ v iÞeþ NxNþ1ðI � RÞ�1eþ xNþ1ðI � RÞ�2e.

4. Numerical results

In order to bring out the qualitative nature of the model under study, we present a few representative examples in this
section. For the arrival process we consider the following five sets of matrices for D0 and D1:

1. Erlang (ERA)
D0 ¼

�5 5
�5 5

�5 5
�5 5

�5

0BBBBBB@

1CCCCCCA D1 ¼

5

0BBBBBB@

1CCCCCCA
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2. Exponential (EXA)
D0 ¼ ð�1Þ; D1 ¼ ð1Þ
3. Hyperexponential (HEA)
D0 ¼
�10 0

0 �1

� �
; D1 ¼

9 1
0:9 0:1

� �

4. MAP with negative correlation ðMNAÞ
D0 ¼
�2 2 0
0 �2 0
0 0 �450:5

0B@
1CA; D1 ¼

0 0 0
0:02 0 1:98

445:995 0 4:505

0B@
1CA
5. MAP with positive correlation ðMPAÞ
D0 ¼
�2 �2 0
0 �2 0
0 0 �450:5

0B@
1CA; D1 ¼

0 0 0
1:98 0 0:02

4:505 0 445:995

0B@
1CA:
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λ = 1, μ = 1.1, θ= 0.6

Fig. 1. Mean duration in slow mode – Erlang services.



C. Sreenivasan et al. / Applied Mathematical Modelling 37 (2013) 3879–3893 3889
All these five MAP processes are normalized so as to have an arrival rate of 1. However, these are qualitatively different in
that they have different variance and correlation structure. The first three arrival processes, namely ERA, EXA, and HEA, cor-
respond to renewal processes and so the correlation is 0. The arrival process labelled MNA has correlated arrivals with cor-
relation between two successive inter-arrival times given by �0.4889 and the arrival process corresponding to the one
labelled MPA has a positive correlation with value 0.4889. The ratio of the standard deviations of the inter-arrival times
of these five arrival processes with respect to ERA are, respectively, 1, 2.2361, 5.0194, 3.1518, and 3.1518.

For the service time distribution we consider the following two phase type distributions.

1. Erlang (ERS)
a ¼ ð1;0Þ; T ¼
�2 2
0 �2

� �

2. Hyperexponential (HES)
a ¼ ð0:9;0:1Þ; T ¼
�1:90 0

0 �0:19

� �
These above two distributions will be normalized to have a specific mean in our illustrative example. Note that these are
qualitatively different in that they have different variances. The ratio of the standard deviation of HES to that of ERS is 3.1745.
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Fig. 2. Mean duration in slow mode – hyperexponential services.
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(d) MAP with negative correlation arrivals

λ = 1, μ = 1.1, θ= 0.6

Fig. 3. Mean number of visits to level zero – Erlang services.
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Illustrative example: The purpose of this example is to see how various system performance measure behave under dif-
ferent scenarios. We fix k ¼ 1; l ¼ 1:1, and h ¼ 0:6. First we look at the effect of varying N and g on the performance mea-
sures: (conditional) mean duration of service in slow mode which ends in the server taking another vacation and the mean
number of visits to level zero before hitting the normal service mode. Due to space restriction, we will display only a few
figures and others are available upon request from the authors. In the following we summarize the observations based on
various graphs of these performance measures.

� An increase in g leads to a decrease in the mean duration of vacation. Hence a switch from the lower service rate to the
normal one occurs more frequently. Once the service rate is brought back to normal, the server clears out the customers at
a faster rate. So the measure, Pidle, appears to increase as g increases. This is true for all values of N and for all combinations
of arrival and service processes under study. As N increases the duration of vacation mode of service gets extended, as is
expected. Due to the slow service rate the customers get accumulated faster. So Pidle decreases until the service rate gets
to normal. Also note that the probability, PLR, that the server is serving at a low rate increases as N is increased (for fixed g)
for all combinations of arrival and service times. This in turn will cause the probability, PNR, of the server serving under
normal mode to decrease as N increases. As expected, the measure PNR appears to increase with increasing g. When com-
paring the mean duration of service in slow mode (see Figs. 1 and 2), we notice (for fixed N and g) that HES services yield a
lower value as opposed to ERS services. This is the case for all five arrival processes considered.
� Referring to Figs. 3 and 4, we note that as g increases, the measure lNVZ appears to decrease in all cases, as expected,

for any fixed N. Among renewal arrivals,those with larger variation yields a smaller value for this measure. That is,
HEA has a smaller value compared to EXA and EXA has a smaller value compared to ERA. Among correlated arrivals,
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λ = 1, μ = 1.1, θ= 0.6

Fig. 4. Mean number of visits to level zero – hyperexponential services.
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MPA has a higher value than MNA. It is worth pointing out that both MNA and MPA processes have the same mean and
variance, but MPA has a positive correlation while MNA has a negative correlation. This indicates the significant role
played by correlation. As N increases, this measure appears to increase monotonically to a limiting value (which
depends on g as well as on the arrival and service time distributions). It should be noted that the rate of approach
is higher for larger values of g. That is, the impact of N on this measure decreases as g increases. We notice that this
measure appears to have a larger value when services are changed from Erlang to hyperexponential. When comparing
this measure (for fixed N and g), we notice that HES services yield a higher value as opposed to ERS services. This is
the case for all five arrival processes considered.

Now we look at the unconditional mean waiting time, l0WTQ , in the queue of a customer. The values of this measure as
functions of N and g under different scenarios are displayed in Table 1. Some key observations are as follows.

� As is to be expected, the mean is a non-increasing function of g (for fixed N) and is a non-decreasing function of N (for
fixed g). This is the case for all combinations of arrival and service processes. However, the rate of change is much
smaller in the case of MPA arrivals as compared to the other arrivals.

� The mean is significantly large for MPA case indicating the role played by the (positively) correlated arrivals.
� For all except MPA arrivals, we notice the mean changes significantly as a function of g when N becomes large. This is

due to the fact that for large N the mean waiting time can only be reduced through an increase in g (which will
decrease the duration of the slow service period).



Table 1
The unconditional mean waiting time in the queue (l0WTQ ).

N g Erlang services Hyperexponential services

ERA EXA HEA MNA MPA ERA EXA HEA MNA MPA

1 0.1 3.21 6.97 25.21 7.07 497.45 23.82 27.64 46.32 27.63 518.10
0.2 3.20 6.96 25.21 7.07 497.44 23.81 27.63 46.31 27.63 518.08
0.3 3.19 6.96 25.21 7.07 497.44 23.80 27.62 46.31 27.63 518.07
0.4 3.18 6.95 25.20 7.07 497.43 23.79 27.61 46.30 27.63 518.06
0.5 3.18 6.95 25.20 7.07 497.43 23.78 27.61 46.30 27.63 518.05

2 0.1 3.50 7.19 25.39 7.42 497.57 24.13 27.90 46.51 28.05 518.27
0.2 3.46 7.16 25.37 7.40 497.55 24.08 27.86 46.48 28.02 518.22
0.3 3.42 7.14 25.36 7.38 497.52 24.03 27.82 46.46 27.99 518.18
0.4 3.39 7.12 25.34 7.36 497.50 23.99 27.79 46.44 27.96 518.15
0.5 3.36 7.10 25.33 7.35 497.49 23.96 27.77 46.43 27.94 518.12

3 0.1 3.83 7.45 25.59 7.57 497.68 24.43 28.17 46.72 28.24 518.40
0.2 3.73 7.38 25.55 7.52 497.61 24.31 28.08 46.66 28.17 518.31
0.3 3.64 7.32 25.51 7.48 497.57 24.22 28.00 46.62 28.11 518.24
0.4 3.56 7.27 25.48 7.44 497.54 24.14 27.94 46.58 28.06 518.19
0.5 3.50 7.23 25.45 7.41 497.52 24.08 27.90 46.55 28.02 518.15

4 0.1 4.16 7.73 25.81 7.90 497.74 24.70 28.43 46.93 28.57 518.50
0.2 3.96 7.59 25.72 7.79 497.65 24.50 28.27 46.83 28.42 518.36
0.3 3.80 7.49 25.65 7.70 497.59 24.36 28.15 46.76 28.31 518.27
0.4 3.68 7.40 25.60 7.63 497.55 24.24 28.06 46.70 28.23 518.21
0.5 3.58 7.34 25.55 7.57 497.53 24.15 27.99 46.65 28.16 518.16

5 0.1 4.46 8.00 26.03 8.14 497.79 24.94 28.68 47.15 28.79 518.58
0.2 4.14 7.78 25.89 7.96 497.67 24.66 28.44 46.99 28.57 518.40
0.3 3.92 7.62 25.78 7.82 497.60 24.46 28.27 46.88 28.42 518.29
0.4 3.75 7.50 25.70 7.71 497.56 24.31 28.15 46.79 28.30 518.22
0.5 3.63 7.41 25.63 7.63 497.53 24.19 28.05 46.72 28.21 518.17

10 0.1 5.54 9.10 26.99 9.29 497.84 25.82 29.61 48.06 29.76 518.77
0.2 4.61 8.36 26.48 8.59 497.69 25.08 28.94 47.55 29.11 518.46
0.3 4.12 7.95 26.17 8.19 497.62 24.67 28.56 47.24 28.73 518.32
0.4 3.85 7.70 25.96 7.95 497.57 24.42 28.32 47.04 28.50 518.23
0.5 3.68 7.54 25.81 7.79 497.54 24.25 28.16 46.90 28.34 518.18
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5. Concluding remarks

In this paper we extended the work of Li and Tian [8] to MAP arrivals and phase type services. We introduced the N-policy
to return the server to normal mode from vacationing one. An illustrative numerical example to bring out the qualitative
nature of the model was presented.
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